
Contractvm: decentralized applications on Bitcoin

Massimo Bartoletti1, Davide Gessa1,2, and Alessandro Sebastian Podda1

1 Università degli Studi di Cagliari, Italy
2 Helperbit.com

Abstract. We introduce Contractvm, a framework for developing de-
centralized general-purpose applications on top of the Bitcoin blockchain.
Our framework addresses several issues of Ethereum: for instance, it does
not need a proprietary blockchain, and it is not affected by attacks which
exploit the verifier’s dilemma. We evaluate the security of Contractvm
under different attacker models: overall, we conclude that applications
running over our framework are reliable whenever the honest nodes hold
the majority of the total hashing power of the Bitcoin network.

1 Introduction

Recently, cryptocurrencies like Bitcoin [24] have pushed forward the concept of
decentralization, by ensuring reliable interactions among mutually distrusting
nodes in the presence of a large number of colluding adversaries. According to
the folklore, Bitcoin would resist to attacks unless the adversaries control the
majority of total computing power of the Bitcoin network. Even though the
literature reports some vulnerabilities which seem to undermine this belief (see
Section 4), in practice Bitcoin has worked surprisingly well so far: indeed, the
known successful attacks to Bitcoin are standard hacks or frauds [19], unrelated
to the Bitcoin protocol.

Cryptocurrencies leverage on a public data structure, called blockchain, where
they permanently store and timestamp all the messages exchanged by nodes.
Adding new blocks to the blockchain (called mining) requires to solve a moder-
ately difficult cryptographic puzzle. The first miner who solves the puzzle earns
some virtual currency (some fresh coins for the mined block, and a small fee for
each transaction included therein). In Bitcoin, miners must invert a hash function
whose complexity is adjusted dynamically in order to make the average time to
solve the puzzle ∼10 minutes. Instead, removing or modifying existing blocks is
computationally unfeasible: roughly, this would require an adversary with more
hashing power than the rest of all the other nodes. If modifying or removing
blocks were computationally easy, an attacker could perform a double-spending
attack where he pays some amount of coins to a merchant (by publishing a suit-
able transaction in the blockchain) and then, after he has received the item he
has paid for, removes the block containing the transaction.

The idea of using Bitcoin and its blockchain as the basis for decentralized ap-
plications beyond digital currency has been explored by several recent works (see

2 Bartoletti M., Gessa D., Podda A.S.

Section VIII in [9] for a brief survey). For instance, [1,5] design protocols for se-
cure multiparty computations and fair lotteries, and [15] proposes a protocol for
Byzantine agreement which is secure when the hashing power of the adversary is
strictly less than that of the honest participants. On a more practical side, Block-
store [8] is a key-value database with get/set operations; Namecoin [25] is a
censorship-resistant domain registration mechanism; CounterParty [11] extends
Bitcoin with advanced financial operations (like e.g., creation of virtual assets,
payment of dividends, etc.), by embedding its own messages in Bitcoin trans-
actions. Ethereum [10] allows for developing general-purpose dapps, interpreted
by a decentralized virtual machine which runs over Ethereum nodes.

Before presenting our proposal to decentralize applications through cryp-
tocurrencies, we discuss the feasibility of implementing such an application as
an Ethereum dapp [10].

Decentralized applications in Ethereum

Ethereum is a general-purpose cryptocurrency with its own blockchain, which
allows clients to outsource computations by embedding them in special blocks
called smart contracts. These contracts are scripts, written in a special Turing-
complete language, which are run by Ethereum nodes upon payment of a re-
ward from the client. When a node completes the execution of a contract, it can
claim the reward by broadcasting a transaction with the computed result. Before
adding the claimant transaction to the blockchain, and consequently assigning
him the reward, the other miners execute a special part of the contract script to
verify the correctness of the provided result. Similarly to Bitcoin, invalid trans-
actions (i.e., where the result of the computation does not pass the verification
script) can be ignored. In this way, miners are incentivized to verify transactions
because, in case one of their transactions in a mined block is invalidated, they
would lose the associated fee. Therefore, the correct result of a computation is
the one agreed upon by the majority of miners.

Implementing decentralized applications over Ethereum has several issues.
First, programmers must write the whole dapp in one of the Ethereum lan-
guages, without exploiting existing legacy software or external non-Ethereum
services (unless using a trusted oracle). This constraint is required because, while
computations carried on by a proper Ethereum virtual machine guarantee to
produce correct results, this cannot be ensured for other kinds of computation.
Another issue is posed by compromised Ethereum nodes, run by attackers who
try to subvert legitimate computations. If a client is not sure to be connected
with an honest Ethereum node, he can only protect himself by locally running
his own node. This is quite impractical, especially when the computing device
has limited resources (e.g., power, bandwidth, disk space): indeed, one has to
download the whole Ethereum blockchain, which today requires about 9GB of
disk space, and takes about 6 hours to synchronize (the Ethereum blockchain is
growing at a rate of 90MB per day). A further practical limitation is that, after
a dapp is deployed on the Ethereum network, it cannot be modified anymore;

Contractvm: decentralized applications on Bitcoin 3

the only way to update it is to broadcast a new dapp with the modified code,
but the old version can still be used.

Besides these practical issues, dapps running over Ethereum are subject to
the attacks described in [22]. These attacks exploit the fact that Ethereum miners
suffer from the so-called verifier’s dilemma, according to which they cannot
rationally decide whether to verify transactions or not. Whatever choice they
make, honest miners are vulnerable of an attack. If a miner honestly follows
the protocol by validating all transactions, then an adversary can impersonate
a claimant and spam nodes with resource-intensive transactions. Since honest
nodes will spend a significant amount of time to verify them, the adversary
gains an advantage in the race for mining the next block and obtaining the
associated fee. Otherwise, if miners choose to disobey the protocol and skip
verification of resource-intensive transactions, then an adversary can claim the
reward of a contract by broadcasting a transaction with a meaningless result.
Since this transaction will not be verified, the adversary obtains the reward, and
in conclusion the client has wasted his money for an incorrect answer.

Contractvm: lightweight decentralization on Bitcoin

We propose and experiment a new, lightweight, technique to decentralize appli-
cations on top of cryptocurrencies, which overcomes the drawbacks of Ethereum
reported before. We implement this technique into an open-source framework
(named Contractvm [17]), which allows developers to write lightweight dapps.
Our decentralized applications run on a set of mutually distrusting nodes. The
incentive of a node to correctly run a dapp is the same used by other cryptocur-
rencies: virtual money. Unlike in Ethereum, we resort to the blockchain only to
store the stream of update messages sent by clients to nodes. More precisely,
we store in the blockchain only hashes of these messages, while we use a Dis-
tributed Hash Table (DHT) to store the whole messages. Since the number of
bits of a hash is limited, we do not need to store them in a proprietary blockchain
(unlike Ethereum); rather, we can piggyback these bits directly on the Bitcoin
blockchain, by using, e.g., the OP_RETURN opcode of unspendable transactions. In
this way we achieve two objectives. First, we have a persistent and tamper-proof
historical record of all the update messages sent by clients, through which nodes
can coherently reconstruct the current state of the dapp. Second, since we only
use OP_RETURN transactions, whose verification is trivial, miners are not subject
to verifier’s dilemma attacks discussed before.

Correctness of computations is established by a consensus mechanism: re-
sponses to a query are sent to a set of nodes which verify the result; a response
is considered valid if agreed by the majority of these nodes. Similarly to Bitcoin
and Ethereum, this mechanism is secure when the majority of nodes is honest.

Unlike Ethereum, our technique does not impose any constraint on the pro-
gramming language used to write dapps: developers can invoke legacy appli-
cations or external services whenever they need to. Using a consensus mecha-
nism to establish correctness, rather than a decentralized virtual machine as in
Ethereum, has an additional benefit: we only need to save in the blockchain the

4 Bartoletti M., Gessa D., Podda A.S.

messages exchanged by clients. In this way we avoid the computational overhead
of Ethereum, which must store in the blockchain the whole state of computa-
tions. This has also another advantage: each node in our framework can choose
which dapp to execute, and so dapps can be updated or removed when needed.
To validate new blocks which appear in the blockchain, nodes no longer need to
verify the state of all dapps.

We establish the security properties of our decentralization technique under
various attacker models (Section 4), by considering recent studies on the secu-
rity of Bitcoin [1,2,3,5,13,15,21,27]. Overall, the results of our analysis establish
that the security of lightweight dapps is strictly tight to the security of Bitcoin:
vulnerabilities in the Bitcoin protocol induce vulnerabilities in lightweight dapps
running upon it. Our analysis also shows that some direct attacks to lightweight
dapps are ruled out by design. It may be obvious to some readers that the secu-
rity level obtained by our decentralization framework comes at a cost in terms
of efficiency: to guarantee the immutability of a transaction which updates the
dapp state, a client has to wait long enough (in the order of tens of minutes).
This is because the probability that an adversary can dismantle such transaction
by creating a longer branch in the blockchain drops exponentially in the number
of blocks which lie on top of the transaction, and in Bitcoin the average min-
ing rate (i.e., the inverse of the average time needed the solve a cryptographic
puzzle) is one every 10 minutes. While this rate may seem unnecessarily low,
a recent result by Garay, Kiayias and Leonardos [15] establishes formally (in a
core Bitcoin protocol) that this is a necessary precondition in order for an hon-
est hashing-power majority to maintain consistency of the blockchain. A possible
way to reduce the latency of transaction confirmation would be to use a cryp-
tocurrency with greater mining rate and fewer active miners (e.g., in Litecoin the
average time to mine a block is 2.5 minutes). However, this could be detrimental
for the security of dapps, because, compared to Bitcoin, it would be easier for
an adversary to control the majority of hashing power. Although implementing
dapps on top of cryptocurrencies is not suitable for real-time contexts, this is
necessary when the security properties they must enjoy are very stringent.

2 Bitcoin and the blockchain

Bitcoin is a cryptocurrency and a digital open-source payment infrastructure
that has recently reached a market capitalization of almost $6 billions [23]. The
Bitcoin network is peer-to-peer, and not controlled by any central authority [24].
Each Bitcoin user owns a personal wallet, which consists of a pair of asymmetric
cryptographic keys: the public key uniquely identifies the user address, while
the private key is used to authorize payments. When a user wants to perform
a payment, he creates a transaction containing the sender and the recipient’s
addresses, and a script which specifies a validity condition for the transaction
(more on this below); then, he broadcasts this “unconfirmed” transaction to the
Bitcoin nodes, called miners. Miners verify and publish these transactions in the
blockchain, which essentially implements a proof-of-work system [12]. Each miner

Contractvm: decentralized applications on Bitcoin 5

maintains a local copy of the blockchain, and a set of unconfirmed transactions
received by clients. The goal of a miner is to group transactions into blocks, and
add these blocks to the blockchain in order to get a revenue.

The mining process. In order to append a new block Bi to the blockchain, miners
must solve a cryptographic puzzle which involves the hash h(Bi−1) of block Bi−1,
a sequence of unconfirmed transactions 〈Ti〉i, and some salt R. More precisely,
miners have to find a value of R such h(Bi ‖ 〈Ti〉i ‖R) < µ, where the value µ is
adjusted dynamically, depending on the current hashing power of the network,
to ensure that the average mining rate is of 1 block every 10 minutes. The goal
of miners is to win the “lottery” for publishing the next block, i.e. to solve the
cryptopuzzle before the others; when this happens, the miner receives a reward
in newly generated bitcoins, and a small fee for each transaction included in the
mined block (simple transactions which draw coins from one address are usually
free of charge). If a miner claims the solution of the current cryptopuzzle, the
others discard their attempts, update their local copies of the blockchain with
the new block Bi, and start mining a new block on top of Bi. In addition,
miners are asked to verify the validity of the transactions in Bi by executing the
associated scripts. Although verifying transactions is not mandatory, miners are
incentivized to do that, because if in any moment a transaction is found invalid,
they lose the fee earned when the transaction was published in the blockchain.

Forks and branches. If two or more miners solve a cryptopuzzle simultaneously,
they create a fork in the blockchain (i.e., two or more parallel valid branches).
In the presence of a fork, miners must choose a branch wherein carrying out
the mining process; roughly, this divergence is resolved once one of the branches
becomes longer than the others. When this happens, the other branches are
discarded, and all the orphan transactions contained therein are nullified.

Scripts. Bitcoin transactions may contain scripts, executed by miners while ver-
ifying blocks. While most scripts simply verify the transaction signature in order
to prevent unauthorized payments, the scripting language features a large set
of arithmetic and cryptographic operators. Unlike Ethereum, the Bitcoin script-
ing language is purposefully not Turing-complete (e.g., it does not allow loops).
Since the time for verifying all the transactions in a block (i.e., to execute the
associated scripts) is negligibile compared to that required for mining a block,
Bitcoin miners are not subject to attacks which exploit the verifier’s dilemma.

3 Lightweight decentralization on Bitcoin

We now present our lightweight decentralization technique. Our goal is to imple-
ment decentralized applications running over a network of nodes which process
clients requests. We classify these requests in two groups: queries and updates.
Queries have no side effects on the internal state of a dapp; in contrast, updates
may change the state of a dapp.

6 Bartoletti M., Gessa D., Podda A.S.

Note that both queries and updates may be affected by node failures, network
partitions, and malicious nodes: e.g., a malicious node may try to cheat by
returning a wrong response to a query, or by trying to update the state in an
inconsistent way. To cope with these issues, we set up a public ledger through
which nodes can reliably reconstruct the dapp state, and we exploit a consensus
mechanism to ensure consistency of updates and of query responses. Further,
we propose a protocol to prevent the tampering of messages exchanged between
nodes and clients.

We use Blockstore [8] as a running example throughout the paper. Blockstore
is a key-value database storage with two APIs, set(key,value) and get(key).
A set request saves a new immutable key-value pair in the database, while get

retrieves a value previously set. Hence, we interpret set as an update message,
and get as a query message.

3.1 Handling update messages

We build upon the Bitcoin blockchain [24], by using it as an immutable log of
messages. Although the blockchain is primarily intended to trade digital cash,
the Bitcoin protocol allows to include a few extra bytes in special transactions
(see Section 5). Hence, we do not store full message data in the blockchain, but
only their message digests. We use the unique hash of the Bitcoin transaction
containing one of these digests as a key for accessing the full message data in
a Distributed Hash Table (DHT, see Figure 1). We impose that DHT entries
are read-only: nodes can add new key-value pairs, but cannot edit existing ones.
Overall, this combination Bitcoin blockchain / DHT gives our public ledger.

Fig. 1: Schema of the public ledger, with the blockchain and the DHT.

When a node receives an update message it broadcasts it to the other nodes,
by publishing the corresponding data in the blockchain/DHT. In this way, we
effectively certify and timestamp the updates sent by the clients. However, this is
not still enough to prevent a malicious node from publishing an invalid update
which compromises the dapp state, and from tampering a client request. We
illustrate below a protocol to avoid these malicious behaviours.

Contractvm: decentralized applications on Bitcoin 7

1. A sends a raw message m to a dapp node B;
2. B generates an unsigned transaction tunsm′ and asks A to sign it;
3. A asks the other nodes in the network to verify if tunsm′ is coherent with m, and

m′ is valid in the current state;
4. if verification passes, then A signs the transaction with its Bitcoin private key,

and sends it to B;
5. B broadcasts the signed transaction tsigm′ to the Bitcoin blockchain.

Fig. 2: Message publication protocol between a client A and dapp nodes.

Message validation. Since nodes maintain a local copy of the public ledger, they
can always reconstruct from it the current state of dapps (nodes can addition-
ally maintain the state of a dapp in an more efficiency data structure, but this
does not affect the security of dapps they run). Similarly to Bitcoin, we do not
guarantee that all the messages in the public ledger are valid ex-ante; rather,
we rule out invalid messages ex-post. For instance, in the Blockstore dapp we
allow for a public ledger containing set(k,1) and set(k,2) even though the
second message is invalid (because in Blockstore each key can be set only once);
the dapp simply ignores the second message. We assume that each dapp has a
validity relation q |= m which defines when the message m is valid in state q, and
a deterministic transition function δ that, given a state q and a message m pro-
duces the new state of the dapp. In order to ignore invalid messages, we require
that δ(q,m) = q if q 6|= m. Therefore, from a sequence of messages m0 · · ·mn, a
node can reconstruct the dapp state as δ(· · · δ(δ(q,m0),m1), · · ·).

Message publication protocol. We define in Figure 2 the protocol between a client
A and dapp nodes, used when A invokes an update request. At flow 2, the node
B that handles the client request generates a transaction and asks the claimer
to sign it. This transaction need not contain exactly the client message m, but it
can contain any message m′ coherent with m. In this context, coherence means
that m′ To protect clients from these attacks, at flow 3 we exploit a consensus
mechanism, through which the client ask the other nodes of the network to
validate the transaction and check that is it coherent with the client request.
Nodes independently examine tunsm′ , m and the local state, and reply with a vote.
The client collects all votes and then decides whether to sign the transaction or
not. We discuss the security of this mechanism in Section 4.2.

Note that the publication protocol prevents malicious nodes from perform-
ing tampering and replay attacks. Tampering attacks are unfeasible because
modifying client messages would invalidate the signature and the hash; replay
attack are ruled out by the Bitcoin protocol, which does not allow to publish
two transactions with the same hash.

We remark that an update transaction is not finalized until it is included in
a confirmed block (see Section 4). Since confirmation involves a delay, it may
happen that a transaction appended to the blockchain is later on declared invalid.

8 Bartoletti M., Gessa D., Podda A.S.

3.2 Handling query messages

Queries does not change a dapp state, so their execution does not extend the
public ledger. When a client A sends a query to a node B, the node executes
the query in its local state, and sends the response to A. To deal with failures
and malicious nodes, the client then invokes a consensus call where he asks the
other nodes to verify the response of B (which is typically more efficient than
computing it). For instance, assume that the current database in Blockstore
contains only a pair {<0,abc>} when A performs get(1). To do that, A sends
the corresponding query message to some dapp node B. The node computes the
query response internally, and replies to A with the value (say) <efg>. Then, A
broadcasts a consensus call to the other nodes, whose majority verifies that the
pair <1,efg> is not contained in the current state. Hence, A decides to reject
the response.

4 Security analysis

In this section we analyse the security of our decentralization technique. First
we investigate how known security issues of Bitcoin may affect decentralized
coordination models implemented on top of it. Then, we study direct attacks to
the nodes of our infrastructure.

4.1 Attacks to the Bitcoin blockchain

Our technique exploits the Bitcoin blockchain to build a trustworthy public
ledger to log messages sent by clients to nodes. Although so far Bitcoin has only
been affected by standard hacks and frauds, some recent works have spotted
some potential vulnerabilities of the Bitcoin protocol, which could be exploited
to execute Sybil attacks [3] and selfish-mining attacks [13].

The Sybil attack is carried out by an adversary that creates multiple fake
identities (e.g., different IPs) to simulate the ownership of a large number of
nodes in a distributed network. These attacks are usually exploited to quickly
propagate malicious information on the network, and to disguise honest par-
ticipants in a consensus/reputation protocol, e.g. by overwhelming the network
with votes of the adversary. The Bitcoin protocol makes Sybil attacks difficult,
since the proof-of-work system allows to mine blocks/confirm transactions only
for non zero-power nodes. This implies that an adversary cannot monopolize the
currency unless he owns the majority (or near to) of the network hashing power,
independently from the number of nodes it controls.

However, if a malicious node uses multiple fake identities, a client may con-
nect, with high probability, to different addresses of the same adversary (and
therefore being isolated from the honest network). The attacker itself can prop-
agate information in the network faster than other peers (this can lead to the
so-called double-spending attack [20,21]). Recent versions of the Bitcoin protocol
try to prevent this attack by limiting client outgoing connections to one IP per
/16; thus, fake nodes cannot reside in the same network of class C.

Contractvm: decentralized applications on Bitcoin 9

In the selfish-mining attack [13], small groups of colluding miners manage
to obtain a revenue larger than their fair share in Bitcoin. The attack can be
summarized as follows. When a selfish-mining pool finds a new block, it keeps
this block hidden to the rest of the network. In this way, selfish miners gain
an advantage over honest nodes in mining the next block: this is equivalent
to keep a private fork of the blockchain, which is only known to the selfish-
mining pool. Note that honest miners still mine on the public branch of the
blockchain, and their hash rate is greater than selfish miners’ one. Therefore,
selfish miners reveal their private fork to the network just before being overcome
by the honest miners: recall that the Bitcoin protocol requires to keep mining on
the longest chain, in the presence of a fork. Eyal and Sirer in [13] show that, under
certain realistic assumptions, this strategy gives better revenues than honest
mining: in the worst scenario (for the adversary), the attack succeeds if the
selfish-mining pool controls at least 1/3 of the total network hash-rate. Rational
miners are thus incentivized to join the selfish mining pool; if the pool manages
to control the majority of computational power of the network, the system loses
its decentralized nature. Garay, Kiayias and Leonardos in [15] essentially confirm
these results: considering a core Bitcoin protocol, they prove that if the hashing
power γ of honest miners exceeds the hashing power β of the adversary pool
by a factor λ, then the ratio of adversary blocks in the blockchain is bounded
by 1/λ (which is strictly greater than β). Thus, as β (the adversary pool size)
approaches 1/2, they control the whole blockchain.

Although these attacks are mainly related to Bitcoin revenues, they can af-
fect the behaviour of any dapp running on top of Bitcoin. In particular, suitably
adapted versions of these attacks allow adversaries to trick nodes about the dapp
state, forcing them to store locally incorrect values. For instance, the message
revocation attack exploits the Selfish-Mine strategy and the Sybil attack to con-
vince an honest node to accept an invalid message. We describe an instance of
this attack in Blockstore, starting from the empty tuple space:

1. An adversary M, part of a selfish mining pool, sends a messagem= set(0,abc)

to an honest node B;
2. M’s pool is mining on a private fork of the blockchain, and the private chain

is one block longer than the public one;
3. B broadcasts the transaction tB , containing m, to Bitcoin miners;
4. tB is included in block Bi+1 of the public chain; B sees the transaction in
Bi+1 and considers it confirmed; so, the local database of B contains only
{(0,abc)};

5. M creates a new transaction tM, including the message m′ = set(1,efg),
and sends it to the selfish mining pool;

6. tM is included in the private block B′i+2, currently hidden to honest miners;
7. selfish miners reveal their private branch; since it is longer than the public

branch, block Bi+1 is discarded, while blocks B′i+1 and B′i+2 are accepted.

At this point, B believes that the database state is {(0,abc)}, while the
correct state is {(1,efg)} since tB has been discarded. As shown in [13], this
attack works also when the selfish-mining pool has no advantage over the honest

10 Bartoletti M., Gessa D., Podda A.S.

miners (i.e., the private chain is not longer than the public one). In fact, they can
exploit Sybil helpers (fake peers used to quickly propagate information through
the network) to convince honest miners to accept B′i+1 instead of Bi+1 (in case
of branches with the same length, miners usually mine over the first one they
come to know).

Even though such attacks are considered difficult to achieve in practice, nodes
can protect from such message revocations by waiting that a transaction is k-
confirmed before using it to reconstruct the dapp state. Namely, if the last
published block is Bn, they consider only transactions which appear in blocks
Bi with i ≤ n − k. This means that an attacker would have to mine at least k
blocks to force the revocation of a k-confirmed transaction. Rosenfeld [27] shows
that, under the realistic assumption that an attacker controls at most the 10%
of the network hashing power, fixing k = 6 is sufficient for reducing the risk to
less than 0.1%. Therefore, we can avoid message revocation attacks by requiring
nodes to update their local states only using 6-confirmed transactions. Note that
the value of k can be adjusted to obtain a better responsiveness of the system
or, in contrast, a higher security level.

4.2 Attacks to Contractvm nodes and to the DHT

Attacks to the DHT. Recall that, since Bitcoin does not allow to store full
message data in transactions, we use blockchain transactions to store message
digests, and a read-only DHT to save the full message, whose key is the trans-
action id. Only the node that creates a transaction can write the DHT at that
address, and overwriting is not allowed. Under these assumptions, the integrity
of the DHT only depends on the security of the hash function used.

Consensus mechanism. Recall that we exploit a consensus mechanism to verify
the results of queries, and to check coherence and validity of updates before a
client confirms a request. Since this mechanism is majority-based, it is reliable till
the presence of attackers in the network is less then 50%, and the distribution of
the attackers is uniform (i.e., it is unlikely that a client connects to a set of nodes
whose majority is malicious). Further, a blacklist system helps clients to reject
connections from malicious nodes (e.g., nodes whose responses are repeatedly
invalid, or whose consensus votes often disagree with the others). However, an
adversary can exploit the Sybil attack shown in previous Section 4.1, to garble
the consensus decisions of a victim client: this is done by creating a large number
of fake zero-power nodes, which do not compute anything but simply return
random votes, to force the client to accept an invalid response (or transaction)
sent by the adversary. To cope with this attack we adopt the same solution used
by Bitcoin, i.e. we limit the client outgoing connections to one IP per /16.

5 Architecture

We now briefly comment the architecture of Contractvm. Its nodes run dapps
by processing their requests, (both updates and queries). Nodes keep a local copy

Contractvm: decentralized applications on Bitcoin 11

of the state of the dapp, which they update upon reception of relevant messages
in the blockchain.

Storage system. The storage system of Contractvm complies to the lightweight
decentralized architecture in Section 3. It uses any blockchain that adheres to the
bitcoin-core protocol (e.g., Bitcoin, Litecoin, Dogecoin, etc.) to provide proof-of-
existence for the dapp messages. Contractvm nodes exploit the extra bytes
available for OP_RETURN transactions3 to store the hash of the message (which
points to the whole message in the DHT), and a flag which identifies the dapp
delegated to handle the request. Messages are stored in a Kademlia DHT (a
popular DHT also used by eMule and bittorrent) run by Contractvm nodes.

Client applications. The client library of Contractvm allows clients to invoke
dapp APIs through standard web-based calls (e.g., JSON-RPC). When clients
invoke APIs which update the dapp state, they must also publish a suitable
transaction in the public ledger, following the protocol described in Section 3.1.

Fig. 3: Contractvm nodes.

Node daemon. The node daemon follows
the schema illustrated in Figure 3. The
Backend module implements the Bitcoin
protocol and it handles new blocks and
transactions; when a new block is discov-
ered, the Chain module retrieves all the
associated transactions, and scans them
to extract those messages which contain
the framework headers. If the header of
message m is found in a transaction with
identifier k, the Chain module retrieves
the content of m from the DHT, using
k as key. The content is then checked
for validity (hash, signer and size match
the data in the DHT), and passed to the
DappManager, which looks for a suitable
dapp to handle the message.

6 Validation

To validate the general applicability of our technique, we have applied it to
implement some decentralized applications.

3 In Bitcoin, OP_RETURN transactions can be used to store 40 bytes for extra data. In
the most recent version of the protocol this limit is 80 bytes; however we prefer to
stick to the old limit of 40 bytes for backward compatibility.

12 Bartoletti M., Gessa D., Podda A.S.

Key-value store. We implement a key-value database inspired to Blockstore [8].
The immutability of the blockchain guarantees that a key already set cannot be
replaced or deleted by a malicious user. Compared to the Blockstore implemen-
tation, which consists of ∼1600 lines of source code, in ours the programming
effort is reduced to ∼100 lines. Appendix A shows a detailed walk-through of
the code of this dapp.

Linda. We have implemented a vanilla version of Linda [16] featuring out, in
and rd operations with data and wildcards. We interpret out and in as up-
date messages, and rd as a query message. Note that the security properties
enjoyed by our decentralized implementation are orthogonal to those of secure
Linda-like languages [6,14,18,28]. These works propose access control mecha-
nisms to prevent untrusted components from interfering with trusted ones in an
open network. For instance, these mechanisms protect against denial-of-service
attacks where a malicious client repeatedly fires in(*) to remove arbitrary tu-
ples from the space, or it overwhelms the tuple space by firing random outs.
Our decentralized Linda enjoys a different security property, which builds upon
the Contractvm consensus mechanism and the immutability of the Bitcoin
blockchain: unless a malicious user controls the majority of the hashing power of
the Bitcoin network, he cannot tamper the integrity of tuples in the space (which
instead is a vulnerability in the above-mentioned proposals). Extending our de-
centralized Linda with the mechanisms of these secure Linda-like languages just
requires to accordingly extend the dapp APIs in Contractvm. Overall, this
extension would enjoy the security properties of both realms.

Message queueing. We have implemented a message-oriented middleware (MOM)
with the core features of RabbitMQ [26], a widespread distributed MOM which
allows clients to communicate by sending/receiving messages to/from FIFO
queues. To deal with node failures, RabbitMQ replicates the queues in various
instances, by forming a federation of brokers which act as a single logical broker.
Unlike our decentralized implementation, these federated brokers are central-
ized, because they are still controlled by a single party; were this not the case,
a malicious federated broker could act as a Dolev-Yao attacker, by modifying,
dropping or rerouting client messages. Note that RabbitMQ cannot give any
guarantee about exchanged messages, since their existence and consistency are
not (cryptographically) proved. By contrast, our dapp ensures that all messages
are correctly dispatched, without assuming any broker to be trusted.

Contract-oriented coordination. Our last case study is a MOM where the in-
teraction among clients is regulated through contracts, which formally specify
their interaction behaviour [4]. In this setting, clients advertise contracts when
they want to establish sessions with other (unknown and untrusted) clients. The
coordination layer creates session among users with compliant contracts, and it
monitors the interaction in each session to detect and sanction contract viola-
tions (e.g., when some action is not performed when prescribed by the contract).
Therefore, the correctness of such middleware heavily depends on the fact that

Contractvm: decentralized applications on Bitcoin 13

the state of sessions is recorded correctly. Centralized implementations, like e.g.
the one in [4], have a main drawback: since users must trust a third party to
record the state of sessions, an attacker which corrupts the third party may
break the correctness of the whole system. Distributed (but not decentralized)
implementations have a different drawback: to securely distribute the state of
sessions among nodes in the network, suitable cryptographic protocols have to
be devised. Our implementation solves both problems: it is decentralized, and
the correctness of the session state is guaranteed by the blockchain.

7 Conclusions

We have proposed a general technique which leverages on the Bitcoin blockchain
in order to implement decentralized applications on top of Bitcoin, and we have
implemented a framework which supports developers in this task without re-
quiring familiarity with the Bitcoin protocol. Decentralization is transparent
to developers and clients: they just invoke dapp APIs, without caring about
whether the request is served by a peer-to-peer network or by a single node.
Applications built upon our framework avoid the classic issues of centralization:
e.g., in a centralized architecture clients must rely on a trusted third party, and
when this gets damaged or attacked, the system becomes unreliable. Instead,
dapps running over Contractvm are reliable whenever the honest nodes hold
the majority of the total hashing power of the Bitcoin network.

Our proposal addresses the issues of Ethereum [10] (discussed in Section 1)
which, at the time of writing, is the only other tool supporting general-purpose
dapps. Unlike Ethereum, in our framework: (i) developers are not bound to a
specific programming language; (ii) they can use legacy software or external
services; (iii) we do not overload the Bitcoin blockchain, since we only use it
to store message digests; (iv) even clients with limited computational resources
can use dapps; (v) obsolete/flawed dapps can be updated or even removed (note
however that this is considered a misfeature in the Ethereum community); (vi)
we are not affected by attacks which exploit the verifier’s dilemma [22]. Overall,
we think that these features make Contractvm more suitable than Ethereum
for most practical uses. The case studies discussed in Section 6 show that the
abstraction layer offered by our framework is usable in practice, and it helps in
reducing the programming effort (e.g., in terms of LOC).

Unlike Ethereum, our framework does not provide any incentive to nodes
which carry on computations. Although this is not needed for guaranteeing secu-
rity of dapps, we believe that some form of incentive would make the framework
more effective: e.g., we could impose some fee to clients, to be split among nodes
which serve their requests; alternatively, we could create a lottery mechanism —
similar that of Bitcoin mining — where nodes receive a reward with a certain
probability, proportional to the number of dapps they run. The effectiveness of
these incentives could be evaluated in a game-theoretic setting, similarly to [7].

14 Bartoletti M., Gessa D., Podda A.S.

References

1. M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek. Secure mul-
tiparty computations on Bitcoin. In IEEE S & P, pages 443–458, 2014.

2. M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek. On the mal-
leability of Bitcoin transactions. In Financial Cryptography and Data Security,
pages 1–18, 2015.

3. M. Babaioff, S. Dobzinski, S. Oren, and A. Zohar. On Bitcoin and red balloons.
In ACM Conference on Electronic Commerce, EC, pages 56–73, 2012.

4. M. Bartoletti, T. Cimoli, M. Murgia, A. S. Podda, and L. Pompianu. A contract-
oriented middleware. In Proc. FACS, 2015.

5. I. Bentov and R. Kumaresan. How to use Bitcoin to design fair protocols. In
CRYPTO, pages 421–439, 2014.

6. L. Bettini, V. Bono, R. De Nicola, G. L. Ferrari, D. Gorla, M. Loreti, E. Moggi,
R. Pugliese, E. Tuosto, and B. Venneri. The Klaim project: Theory and practice. In
Global Computing. Programming Environments, Languages, Security, and Analysis
of Systems, pages 88–150, 2003.

7. G. Bigi, A. Bracciali, G. Meacci, and E. Tuosto. Validation of decentralised smart
contracts through game theory and formal methods. In Programming Languages
with Applications to Biology and Security, pages 142–161, 2015.

8. Blockstore: Key-value store for name registration and data storage on the Bitcoin
blockchain. https://github.com/blockstack/blockstore, 2014.

9. J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. Felten. SoK:
Research perspectives and challenges for Bitcoin and cryptocurrencies. In IEEE S
& P, pages 104–121, 2015.

10. V. Buterin. Ethereum: a next generation smart contract and decentralized appli-
cation platform. https://github.com/ethereum/wiki/wiki/White-Paper, 2013.

11. R. Dermody, A. Krellenstein, O. Slama, and E. Wagner. CounterParty: Protocol
specification. http://counterparty.io/docs/protocol_specification/, 2014.

12. C. Dwork and M. Naor. Pricing via processing or combatting junk mail. In
CRYPTO, pages 139–147. Springer-Verlag, 1993.

13. I. Eyal and E. Sirer. Majority is not enough: Bitcoin mining is vulnerable. In
Financial Cryptography and Data Security, pages 436–454, 2014.

14. R. Focardi, R. Lucchi, and G. Zavattaro. Secure shared data-space coordination
languages: A process algebraic survey. Sci. Comput. Program., 63(1):3–15, 2006.

15. J. A. Garay, A. Kiayias, and N. Leonardos. The Bitcoin backbone protocol: Anal-
ysis and applications. In EUROCRYPT, pages 281–310, 2015.

16. D. Gelernter. Generative communication in Linda. ACM Trans. Program. Lang.
Syst., 7(1):80–112, 1985.

17. D. Gessa. Contractvm. https://github.com/contractvm.
18. R. Handorean and G.-C. Roman. Secure sharing of tuple spaces in ad hoc settings.

Electronic Notes in Theoretical Computer Science, 85(3):122–141, 2003.
19. A. Hern. A history of Bitcoin hacks. http://www.theguardian.com/technology/

2014/mar/18/history-of-bitcoin-hacks-alternative-currency, march 2014.
20. G. Karame, E. Androulaki, and S. Capkun. Two Bitcoins at the price of one?

double-spending attacks on fast payments in Bitcoin. IACR Cryptology ePrint
Archive, 2012:248, 2012.

21. G. O. Karame, E. Androulaki, M. Roeschlin, A. Gervais, and S. Capkun. Misbe-
havior in Bitcoin: A study of double-spending and accountability. ACM Trans.
Inf. Syst. Secur., 18(1):2, 2015.

https://github.com/blockstack/blockstore
https://github.com/ethereum/wiki/wiki/White-Paper
http://counterparty.io/docs/protocol_specification/
https://github.com/contractvm
http://www.theguardian.com/technology/2014/mar/18/history-of-bitcoin-hacks-alternative-currency
http://www.theguardian.com/technology/2014/mar/18/history-of-bitcoin-hacks-alternative-currency

Contractvm: decentralized applications on Bitcoin 15

22. L. Luu, J. Teutsch, R. Kulkarni, and P. Saxena. Demystifying incentives in the
consensus computer. In ACM CCS, pages 706–719, 2015.

23. CoinMarketCap: Crypto-currency market capitalizations. http://coinmarketcap.
com, 2016.

24. S. Nakamoto. Bitcoin: a peer-to-peer electronic cash system. https://bitcoin.

org/bitcoin.pdf, 2008.
25. Namecoin: a decentralized DNS service. https://wiki.namecoin.org, 2011.
26. RabbitMQ. https://www.rabbitmq.com.
27. M. Rosenfeld. Analysis of hashrate-based double spending. CoRR, abs/1402.2009,

2014.
28. J. Vitek, C. Bryce, and M. Oriol. Coordinating processes with secure spaces.

Science of Computer Programming, 46(1–2):163–193, 2003.

http://coinmarketcap.com
http://coinmarketcap.com
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://wiki.namecoin.org
https://www.rabbitmq.com

16 Bartoletti M., Gessa D., Podda A.S.

A Dapp source code walk-through

This appendix is a brief tutorial for dapp developers. We illustrate how to write a
dapp by commenting the source code of our first case study, i.e. the decentralized
key-value storage service. The full source code of this dapp is available at [17].

The key-value storage dapp offers two APIs: set(key,value) and get(key).
A set request saves a new immutable key-value pair, while get retrieves a pre-
viously set value. Since set changes the state of the dapp, this API requires the
client to publish a suitable message in the blockchain. Nodes scan the blockchain
for new messages, and when they find a set request, they save the new key-value
pair in their local database. Instead, executing a get does not require to publish
any message, because nodes can handle this request internally.

The dapp is split in two main parts: the first (Listings 1 to 4) run in nodes,
while the second (Listing 5) implements the library that client applications use
to interact with the dapp. Note that, while we have chosen Python for develop-
ing this dapp, our framework supports arbitrary programming languages. The
mechanism used to this purpose is standard: the programmer codes the core fea-
tures of dapp in her preferred language, and the framework uses them through
the foreign function interface.

A.1 Node part

In Listing 1 we define the protocol and the supported messages of the dapp. At
lines 1-4 we define a set of constants containing the code for each type of message
and the dapp code. Then we extend the Message class, by defining a constructor
for the set message (lines 7-13), and by overriding the function toJSON() for
the serialization of message data.

The next step is to write the core of our dapp: this is done in Listing 2
by extending the class dapp.Core. In this class we define all the methods that
interact with the dapp state, including query and pair insertion. We define a
function to obtain a value given its key, and another one to set a new key-value
pair. We save key-value pairs in the internal database which is automatically
created by the framework to store the state of a dapp.

The services offered by the dapp are exposed to client applications as APIs.
These APIs are implemented in Listing 3, where we extend the class dapp.API,
and we create a dict object which contains new API calls (lines 5-6). Then, we
write our two APIs:

– set (key,value): creates a set message with a new key-value pair, and re-
turns message broadcasting information;

– get (key): gets a value for a given key, by invoking the Core.get method.

Finally, in Listing 4 we bind all the classes created so far. We use the method
handleMessage (lines 10-12) to tell the DappManager how to handle messages.

Contractvm: decentralized applications on Bitcoin 17

1 class BlockStoreProto:

2 DAPP_CODE = [0x01, 0x02]

3 METHOD_SET = 0x01

4 METHOD_LIST = [METHOD_SET]

5

6 class BlockStoreMessage (Message):

7 def set (key, value):

8 m = BlockStoreMessage ()

9 m.Key = key

10 m.Value = value

11 m.PluginCode = BlockStoreProto.DAPP_CODE

12 m.Method = BlockStoreProto.METHOD_SET

13 return m

14

15 def toJSON (self):

16 data = super (BlockStoreMessage, self).toJSON ()

17 if self.Method == BlockStoreProto.METHOD_SET:

18 data[’key’] = self.Key

19 data[’value’] = self.Value

20 else:

21 return None

22 return data

Listing 1: Blockstore dapp: messages.

A.2 Library

In Listing 5 we define a library module, that binds the API calls described
in Listing 3 inside a library, which will be used to write client applications. We
do this by extending the DappManager. This class includes the services of our
dapp, by binding the API calls bs.get and bs.set. The method set only creates
and broadcasts a new message containing the given key-value pair; the method
get performs a consensus query to nodes, and returns the resulting value.

A.3 Example usage

Listing 6 shows a simple “hello world” client of our Blockstore dapp. At lines
4-5 we create a ConsensusManager, and we bootstrap it with a seed node. At
lines 7 we create a Wallet object, by using an external service with private
keys saved in the file app.wallet. At line 8 we create a BlockstoreManager, by
using the ConsensusManager and Wallet objects created before. At lines 10-11
the script asks the user for a key-value pair, and at line 13 it publishes it to
the framework. Then, at line 14-15 the script asks the user for a key, and then
queries and returns the associated value (if any).

18 Bartoletti M., Gessa D., Podda A.S.

1 class BlockStoreCore (dapp.Core):

2 def __init__ (self, chain, database):

3 super (BlockStoreCore, self).__init__ (chain, database)

4

5 def set (self, key, value):

6 if self.database.exists (key):

7 return

8 else:

9 self.database.set (key, value)

10

11 def get (self, key):

12 if not self.database.exists (key):

13 return None

14 else:

15 return self.database.get (key)

Listing 2: Blockstore dapp: Core.

1 class BlockStoreAPI (dapp.API):

2 def __init__ (self, core, dht, api):

3 self.api = api

4 rpcmethods = {}

5 rpcmethods["get"] = { "call": self.method_get }

6 rpcmethods["set"] = { "call": self.method_set }

7 errs = { "KEY_ALREADY_SET": {"code": -2, "message": "Already set"},

8 "KEY_IS_NOT_SET": {"code": -3, "message": "Is not set"} }

9 super (BlockStoreAPI, self).__init__(core, dht, rpcmethods, errs)

10

11 def method_get (self, key):

12 v = self.core.get (key)

13 if v == None:

14 return self.createErrorResponse ("KEY_IS_NOT_SET")

15 else:

16 return v

17

18 def method_set (self, key, value):

19 if self.core.get (key) != None:

20 return self.createErrorResponse ("KEY_ALREADY_SET")

21

22 message = BlockStoreMessage.set (key, value)

23 return self.createTransactionResponse (message)

Listing 3: Blockstore dapp: API.

Contractvm: decentralized applications on Bitcoin 19

1 class blockstore (dapp.Dapp):

2 def __init__ (self, chain, db, dht, apiMaster):

3 self.core = BlockStoreCore (chain, db)

4 api = BlockStoreAPI (self.core, dht, apiMaster)

5 super(blockstore, self).__init__ (BlockStoreProto.DAPP_CODE,

6 BlockStoreProto.METHOD_LIST,

7 chain, db, dht, api)

8

9 def handleMessage (self, m):

10 if m.Method == BlockStoreProto.METHOD_SET:

11 self.core.set (m.Data[’key’], m.Data[’value’])

Listing 4: Blockstore dapp.

1 from libcontractvm import Wallet, ConsensusManager, PluginManager

2

3 class BlockStoreManager (DappManager.DappManager):

4 def __init__ (self, consensusManager, wallet = None):

5 super (BlockStoreManager, self).__init__ (consensusManager, wallet)

6

7 def set (self, key, value):

8 cid = self.produceTransaction (’bs.set’, [key, value])

9 return cid

10

11 def get (self, key):

12 req = self.consensusManager.jsonConsensusCall (’bs.get’, [key])

13 return req[’result’]

Listing 5: Blockstore dapp: library.

20 Bartoletti M., Gessa D., Podda A.S.

1 from libcontractvm import *

2 from blockstore import BlockstoreManager

3

4 consMan = ConsensusManager.ConsensusManager ()

5 consMan.bootstrap ("http://192.168.1.102:9095")

6

7 w = WalletExplorer.WalletExplorer (wallet_file="app.wallet")

8 bs = BlockStoreManager.BlockStoreManager (consMan, wallet=w)

9

10 ykey = input (’Insert a key to set: ’)

11 yvalue = input (’Insert a value to set: ’)

12 bs.set (ykey, yvalue)

13

14 ykey = input (’Insert a key to get: ’)

15 value = bs.get (ykey)

16 print (ykey,’=’,value)

Listing 6: Example usage of the client library for the Blockstore dapp.

	Contractvm: decentralized applications on Bitcoin

